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Sighed languages are crucial

Only 30-40% of English speech can be lipread
Cochlear implants do not provide complete
access to spoken language

Integral to Deaf culture

I'M DEAF
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Why not just use subtitles / text?

Convey tone, emotion
Literacy levels vary among signers
Primary / most accessible

After eight months la ngu age fo r m a ny

of nonstop negotiation,
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Current progress in Al for signed languages

101 papers between 2021-2023 (Desai et al., 2024)

o Most focus solely on translation between spoken and sighed language

Translate the above ASL sign to English

.....

Assistant
The ASL sign shown in the image translates to
"believe" in English.
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Challenge: data

~ 40 public datasets
Largest: ~1000 hours

Gap between training data and target users

Lack of experts

SIGN: WONDERFUL

: 2
Consent and privacy” BOBSL dataset

(Albanie et al., 2021)



Challenge: simultaneous channels

Handshape

Hand orientation
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Challenge: spatial dependencies

you - GIVE-TO-me you-GIVE-TO-hy mi/Aer

Directional verbs in ASL
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Challenge: Deaf-centric design

April 12, 2016

UW undergraduate team wins $10,000
Lemelson-MIT Student Prize for gloves that
translate sign language

Wearable-tech glove translates sign
language into speech in real time

The device is inexpensive, flexible and highly durable, UCLA bioengineers say

Matthew Chin
June 29, 2020

Hand-ear co-ordination: Interactive glove
translates sign language into speech

Infinity Glove, a Lebanon-based start-up, seeks to help translate sign-language into speech by using a high tech glove solution. Cody
Combs f The National

Cody Combs

2" Feb 21,2024 ®Listunrn English @Listcnin.ﬁr.
L
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Challenge: Deaf-centric design

Why Sign-Language Gloves Don't
Help Deat People

Wearable technologies that claim to translate ASL overlook the

intricacies of the language, as well as the needs of signers.

By Michael Erard

Sign Language Translating Devices Are Cool. But Are
They Useful?

a Emily Matchar

. . | i

News & Views | Published: 15 July 2020 nnovation Correspondent
February 26, 2019

WEARABLE TECHNOLOGY
Do deaf communities actually want sign language

gloves?

Joseph Hill &



Arguments for today’s talk

2.  Awareness of the language and the community helps us build

practical NLP models



ASL STEM Wiki

Dataset to support
DHH students in STEM

ASL STEM Wiki: Dataset and Benchmark for Interpreting STEM Articles. Yin et al. (2024)
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ASL STEM Wiki

Automatic sign suggestion

Here are other ways
people sign

¥
Dataset to support Tool to assist ASL interpreters,  Self-supervised sign
DHH students in STEM  informed by linguistic language modeling for

properties and Deaf pedagogy data efficiency

ASL STEM Wiki: Dataset and Benchmark for Interpreting STEM Articles. Yin et al. (2024)
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Barriers to STEM education for DHH students

ASL -> primary and most accessible language for many

deaf and hard-of-hearing (DHH) students in the US

Deaf students score higher on science with direct
instruction in ASL (Kurz et al., 2015)

STEM resources in ASL are scarce

Lack of standardized ASL signs for technical words o ,
“Relativistic electromagnetism”



ASL STEM Wiki

Photosynthesis W

Articte hips.sien wikipedia org/wikiPhotosynih

0.0 Photosynthesis i 3 process used by plants and other organisms 10 convert
sght energy nto chemical onergy that can later be rleased 10 fuel the
organsms’ sciivities. ©

- 254 Wikipedia articles

- Science, technology, I
mathematics, medicine, | o s b stecn et

Videos 2ACTON Centres that contan green chioroptyl pigments. ©

Jigae ° energy Loraogs e
guc jht-indeg
N $Horent 1
v ¥ vl ©
tra ATF H produce sht depend 8
npo r
xh .0
VST 'h
¥ at I + )



ASL STEM Wiki

Photosynthesis W

Arficte hops.ien wikipedia orgwikiPhotosynih

0.0 Photosynthesis i 3 process used by plants and other organisms 10 convert

sght energy nto chemical onergy that can later be rleased 10 fuel the
organsms’ sciivities. ©

- 254 Wikipedia articles

- Science, technology, O
mathematics, medicine, o oo S

geography — o A
- 37 certified ASL interpreters b oo e s

A
algae te enerqy raoe ~
oduc e ht-indepern

¥ Vied the Pforent m
" ; . rnd. ©
3 tha ATP H procduced t soend B
xh . 0
{ ANVST ably
e t e sly used fe e
10ge 5 0



Photosynthesis ik

ASL STEM Wiki

Arlicte hips.iien wikipedia orgwkiPhotosyniis

0.0 Photosynthesis i 3 process used by plants and other organisms 10 convert
ght encrgy nto chemical onergy that can later be rfeased 10 fuel the
organsms’ sciivities. ©

- 254 Wikipedia articles

- Science, technology, s —
mathematics, medicine, -  : '.j P
geography S Sy

- 37 certified ASL interpreters ':'
- 300+ hours
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Contributions

1. First dataset of continuous signing for STEM: ASL STEM Wiki
2. Linguistic analysis & appropriate use cases
3. New Al tool: automatic sign suggestion

4. New modeling technique: contrastive learning for signed language



Linguistic analysis — fingerspelling in ASL STEM Wiki
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High rate of fingerspelling in ASL STEM Wiki

- Fingerspelling: spell out an English word using
letter signs

- ~6.4% of ASL (Morford and MacFarlane, 2003)

- ~31.5% of ASL STEM Wiki

“Relativistic electromagnetism”
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High rate of fingerspelling in ASL STEM Wiki

Categories of fingerspelled words

- 63.9% of fingerspelling is STEM words
- Interpreters often resort to fingerspelling when

a technical sign is not known

® STEM ® Proper noun ® Loan word B Other
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High rate of fingerspelling in ASL STEM Wiki

Categories of fingerspelled words

11e hd AT\ A 1

_ 63.1'\1\/ r re*
“[Deaf] students prefer that terms

- Int gither be signed in ASL, or signed and Vhen

a te fingerspelled, as opposed to just

fingerspelled.”

Development of American Sign Language Guidelines for K-12 Academic Assessments

® STEM ® Proper noun ® Loan word B Other

-> NLP tool to address the high rate of fingerspelling in STEM
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User

Here are other ways
people sign
“relativistic

electromagnetism”

3 steps:
1. Fingerspelling detection
2. Fingerspelling alignment

3. Sign retrieval
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1. Fingerspelling detection
2. Fingerspelling alignment
3. Sign retrieval

Automatic sigh suggestion

Relativistic electromagnetism

Here are other
ways people sign
“relativistic
electromagnetism”

3. Sign retrieval



Self-supervised learning for fingerspelling detection

- Need fingerspelling labels

Relativistic electromagnetism is a physical phenomenon due to Coulomb's law and Lorentz transformations.
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Self-supervised learning for fingerspelling detection

elling detectio

F
Fin elling ali t
Automatic Slgn suggestlon Sg t g enme

: Relativistic electromagnetism is a physical phenomenon due to Coulomb's law and Lorentz transformations.
- We annotated 507 videos

wNn =

- Need fingerspelling labels

- 63,759 unannotated videos

1. Fingerspelling detection
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Self-supervised learning

Learn representations of the structure and timing of signs
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Self-supervised learning
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Self-supervised learning

Learn associations between ASL videos and English text
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Does contrastive learning work?
Fingerspelling detection

Model (contrastive

. . 0.28
learning + fine-tune)

+47% improvement with
contrastive learning
Model (fine-tune only) 0.19

Random 0.06

loU score



Summary

6 ; Fingerspelling detection
Automatic sign suggestion N

Model (contrastive
learning + fine-tune)

« 50 e ? Here are other ways +47% improvement with

people sign contrastive learning
E “relativistic' Model (fine-tune only) 0.19 |
electromagnetism”
’User Random 0.06
loU score
New dataset to support New task to enhance ASL Contrastive learning for

DHH students in STEM STEM interpretations sign language modeling
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Efficiency: successful communication with minimal effort by sender +

receiver
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(Lijencrants & Lindblom, 1972)



Efficiency shapes human language

Efficiency: successful communication with minimal effort by sender +

receiver

What would communicative efficiency look like in the visual modality?

Articulatory effort
N

Handshape frequency
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Language contact in ASL

Fingerspelling Loan signs Initialized signs

How do different language sources compare in communicative efficiency?
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Research questions

RQ1. Do ASL handshapes reflect pressures for communicative efficiency?
RQ2. If so, do we find communicative efficiency mostly in native signs, or also

in sighs borrowed from English?

- Compare handshape frequency and sender / receiver effort
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Data

ASL Fingerspelling Recognition Corpus

Y
100k+ fingerspelled phrases, no "’
character-level labels ?/
Heuristic algorithm + manual post-
correction

time
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Data

AS L— L EX (C a Sel“ et a l_. , 2 O 1 7) Alternate English Translations:

cheese, dairy, food

. Handshape categories g

Entry ID
) S i g n f re q u e n Cy English Word Frequency

Frequency

Deaf Signer Iconicity

- Native / initialized / loan sign ihilzed Sign

Fingerspelled Loan Sign

Compound

Number Of Morphemes

Handshape Image
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Effort metrics

Articulatory effort

Finger independence

Perceptual effort

Low finger independence ~ High finger independence
(Low artlculatory effort)  (High articulatory effort)
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Effort metrics

Articulatory effort

- Finger independence

Perceptual effort

- Handshape distance

High handshape distance
(Low perceptual effort)

Low handshape distance
(High perceptual effort)



Results

Handshape frequency vs. articulatory effort. native ASL signs
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Results

Handshape frequency vs. articulatory effort. native ASL signs

Core ASL signs
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Results
Handshape frequency vs. articulatory effort. borrowed ASL signs

(initialized / fingerspelled loan signs)

Initialized & loan ASL signs
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Results
Handshape frequency vs. articulatory effort. borrowed ASL signs

(initialized / fingerspelled loan signs)

Initialized & loan ASL signs
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Results

English letter frequency vs. articulatory effort (fingerspelling)

ASL Fingerspelling
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English letter confusability vs. perceptual effort (fingerspelling)
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—no correlation once we
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Confusability and letter frequency

are highly correlated
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What we learned

RQ2. If so, do we find communicative efficiency mostly in native signs, or also in
signs borrowed from English? Only in native signs!

Why?

- ASL fingerspelling is invented by hearing educators (Padden and Gunsauls,

2003)

- Frequent words undergo faster language change (Bybee, 2015; Caselli et al.,

2022)

- Foreign components obey fewer phonological rules (Brentari and Padden, 2001)
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o Compare the frequency and effort of ASL handshapes

o Automatic metrics to quantify production/recognition effort

e We observe communicative efficiency in only handshapes of native
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2. Awareness of the language and the community helps us build
practical NLP tools

3. NLP can help answer open questions in sign linguistics
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Takeaways from this talk

1. The linguistic complexity of sighed languages gives rise to unique
NLP challenges — testbed for general multimodal intelligence!

2. Awareness of the language and the community helps us build
practical NLP tools — accessibility + language revitalization!

3. NLP can help answer open questions in sign linguistics — legitimize

sighed languages + advance science!



Future directions
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Ongoing work (sneak peek)

Do sign recognition models rely on meaningful phonological features?

- Minimal pairs contrasting in phonology

-

o Class =

Summer

Handshape contrast Location contrast Movement contrast



Ongoing work (sneak peek)

Model embeddings can distinguish most minimal pairs
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200 of 254 minimal pairs (78.7%) induce significantly higher
distances in embeddings across 5 pairs of signers (p < 0.05)
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Ongoing work (sneak peek)

Model embeddings can distinguish most minimal pairs
No correlation between model perception and human expert

perception —why?

Contributions: evaluation, interpretability, data-efficient training



Future challenges

the world if we had sign foundation models:

- Efficient data collection
- Better multimodal architectures

- Spatial reasoning




Data collection

HCI interfaces for data collection
Al tools to assist data annotation

Al video anonymization

Data augmentation

ASL Sea Battle
(Bragg et al., 2021)



Education

What environment to learn sighed language

digitally?

Adaptive Al for personalized learning

Educational content delivery, real-time ASL Champ
(Gallaudet, 2024)

classroom support



Signhed language generation

What does a good sighing avatar look like?

Translation between signed languages

Storytelling

Here Comes Mavo!
(Gallaudet, 2025)



The end!
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