
NLP for Signed Languages:
Challenges and Opportunities

Kayo Yin

Berkeley 
NLP

Berkeley AI 
Research 



Arguments for today’s talk

1. The linguistic complexity of signed languages gives rise to unique 

NLP challenges



Arguments for today’s talk

1. The linguistic complexity of signed languages gives rise to unique 

NLP challenges

2. Awareness of the language and the community helps us build 

practical NLP models



Arguments for today’s talk

1. The linguistic complexity of signed languages gives rise to unique 

NLP challenges

2. Awareness of the language and the community helps us build 

practical NLP models

3. NLP can help answer open questions in sign linguistics



Arguments for today’s talk

1. The linguistic complexity of signed languages gives rise to unique 

NLP challenges

2. Awareness of the language and the community helps us build 

practical NLP models

3. NLP can help answer open questions in sign linguistics



Common misconceptions of signed languages

• Not just gestures for spoken language
“Name”

American Sign Language British Sign Language



Common misconceptions of signed languages

• Not just gestures for spoken language

• Not just hand gestures

“Name”

American Sign Language British Sign Language



Common misconceptions of signed languages

• Not just gestures for spoken language

• Not just hand gestures

• Not just 1 universal sign language

“Name”

American Sign Language British Sign Language
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• Not just gestures for spoken language

• Not just hand gestures

• Not just 1 universal sign language

• Not slower than speaking

“Name”

American Sign Language British Sign Language
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- Cochlear implants do not provide complete 
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- Integral to Deaf culture

Signed languages are crucial
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- Convey tone, emotion

- Literacy levels vary among signers

- Primary / most accessible 

language for many

Why not just use subtitles / text?
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Possible applications of AI 

Translation

Education

Smart assistants

Chatbots

Information retrieval
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Current progress in AI for signed languages

- 101 papers between 2021-2023 (Desai et al., 2024)

○ Most focus solely on translation between spoken and signed language

SignLLM 
(Fang et al., 2024)

GPT-4o
(OpenAI, 2024)

“Sign language gloves”

https://arxiv.org/pdf/2403.02563
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Challenge: data

- ~ 40 public datasets

- Largest: ~1000 hours

- Gap between training data and target users

- Lack of experts

- Consent and privacy? BOBSL dataset 
(Albanie et al., 2021)
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Dataset to support 
DHH students in STEM

Self-supervised sign 
language modeling for 
data efficiency

ASL STEM Wiki: Dataset and Benchmark for Interpreting STEM Articles. Yin et al. (2024)

Tool to assist ASL interpreters, 
informed by linguistic 
properties and Deaf pedagogy
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- ASL -> primary and most accessible language for many 

deaf and hard-of-hearing (DHH) students in the US

- Deaf students score higher on science with direct 

instruction in ASL (Kurz et al., 2015)

- STEM resources in ASL are scarce

- Lack of standardized ASL signs for technical words
“Relativistic electromagnetism”
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- 254 Wikipedia articles

- Science, technology, 

mathematics, medicine, 

geography

- 37 certified ASL interpreters

- 300+ hours

ASL STEM Wiki
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Contributions

1. First dataset of continuous signing for STEM: ASL STEM Wiki

2. Linguistic analysis & appropriate use cases

3. New AI tool: automatic sign suggestion 

4. New modeling technique: contrastive learning for signed language
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“Relativistic electromagnetism”

- Fingerspelling: spell out an English word using 

letter signs

- ~6.4% of ASL (Morford and MacFarlane, 2003)

- ~31.5% of ASL STEM Wiki
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High rate of fingerspelling in ASL STEM Wiki

- 63.9% of fingerspelling is STEM words

- Interpreters often resort to fingerspelling when 

a technical sign is not known
417

137

69
30

Categories of fingerspelled words

STEM Proper noun Loan word Other

“[Deaf] students prefer that terms 

either be signed in ASL, or signed and 

fingerspelled, as opposed to just 

fingerspelled.”

Development of American Sign Language Guidelines for K-12 Academic Assessments

-> NLP tool to address the high rate of fingerspelling in STEM
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Automatic sign suggestion

User

Here are other ways 
people sign 
“relativistic 

electromagnetism”

3 steps:

1. Fingerspelling detection

2. Fingerspelling alignment

3. Sign retrieval
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Relativistic electromagnetism is a physical phenomenon due to Coulomb's law and Lorentz transformations.

2. Fingerspelling alignment

Relativistic electromagnetism Coulomb’s Lorentz

1. Fingerspelling detection
2. Fingerspelling alignment
3. Sign retrieval
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Automatic sign suggestion

Relativistic electromagnetism

3. Sign retrieval

Here are other 
ways people sign 

“relativistic 
electromagnetism”

1. Fingerspelling detection
2. Fingerspelling alignment
3. Sign retrieval
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Self-supervised learning for fingerspelling detection

- Need fingerspelling labels

- We annotated 507 videos

- 63,759 unannotated videos
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Self-supervised learning

Different video
Same video, 

video 1 < video 2
Same video, 

video 2 < video 1

ModelLearn representations of the structure and timing of signs
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Video = sentence 1 Video = sentence 2

Model

Self-supervised 
learning

Sentential 
contrastive 

learning

Self-supervised learning

Relativistic 
electromagnetism is a 
physical phenomenon 
due to…

An observer at rest with 
respect to a system of 
static, free charges will…

Learn associations between ASL videos and English text 



Fingerspelling detection

Relativistic 
electromagnetis
m is a physical 
phenomenon 
due to…

Graph convolutional 
network 

CANINE 
(Clark et al., 2022)

Self-supervised learning

Temporal 
contrastive 

learning

Sentential 
contrastive 

learning

Fine-tuning

Fingerspelling 
detection
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Does contrastive learning work?

0.06

0.19

0.28

Random

Model (fine-tune only)

Model (contrastive
learning + fine-tune)

Fingerspelling detection

IoU score

+47% improvement with 
contrastive learning



Summary

New dataset to support 
DHH students in STEM

Contrastive learning for 
sign language modeling

New task to enhance ASL 
STEM interpretations
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Pressures for Communicative Efficiency in American Sign Language. Yin et al. (2024)

Compare efficiency pressures 
from native ASL signs vs. signs 
borrowed from English

Compare ASL handshape 
frequency and signer effort
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Efficiency shapes human language

Efficiency: successful communication with minimal effort by sender + 

receiver

Frequent/informative words are shorter 

(Zipf, 1935; Piantadosi et al., 2011)

Vowel space maximizes 
perceptual contrast

 (Liljencrants & Lindblom, 1972)



Efficiency shapes human language

Efficiency: successful communication with minimal effort by sender + 

receiver

What would communicative efficiency look like in the visual modality?
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Language contact in ASL

ASL TIKI 1 Safety Starting Signs Good for mask wearers or Tiki Car Parade  to understand 
easier... Flashcards | Quizlet

Fingerspelling Loan signs Initialized signs

Class

How do different language sources compare in communicative efficiency?
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Data

ASL Fingerspelling Recognition Corpus

- 100k+ fingerspelled phrases, no 
character-level labels

- Heuristic algorithm + manual post-
correction

- 1062 letters extracted did you have a good 
time
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ASL-LEX (Caselli et al., 2017)

- Handshape categories

- Sign frequency 

- Native / initialized / loan sign
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Effort metrics

Articulatory effort

- Finger independence 

Perceptual effort

- Handshape distance
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Results
Handshape frequency vs. articulatory effort：borrowed ASL signs 

(initialized / fingerspelled loan signs)

Pearson’s r=-0.06,p=0.81
→no correlation
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English letter frequency vs. articulatory effort (fingerspelling)

Pearson’s r=-0.31,p=0.15
→no correlation
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Results

English letter confusability vs. perceptual effort (fingerspelling)

Pearson’s r=0.19,p=0.00
→no correlation once we 
partial letter frequency out!

Confusability and letter frequency 

are highly correlated
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RQ2. If so, do we find communicative efficiency mostly in native signs, or also in 

signs borrowed from English? Only in native signs!

Why?

- ASL fingerspelling is invented by hearing educators (Padden and Gunsauls, 

2003)

- Frequent words undergo faster language change (Bybee, 2015; Caselli et al., 

2022)

- Foreign components obey fewer phonological rules (Brentari and Padden, 2001)

What we learned



Summary

● Compare the frequency and effort of ASL handshapes

● Automatic metrics to quantify production/recognition effort

● We observe communicative efficiency in only handshapes of native 

signs, not signs borrowed from English
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Ongoing work (sneak peek)

Do sign recognition models rely on meaningful phonological features?

- Minimal pairs contrasting in phonology

Class

Handshape contrast Location contrast

Dry

Summer

Paper

School

Movement contrast
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Ongoing work (sneak peek)

- Model embeddings can distinguish most minimal pairs

- No correlation between model perception and human expert 

perception – why?

Contributions: evaluation, interpretability, data-efficient training 



Future challenges

- Efficient data collection

- Better multimodal architectures

- Spatial reasoning

the world if we had sign foundation models:



Data collection

ASL Sea Battle
(Bragg et al., 2021)

- HCI interfaces for data collection

- AI tools to assist data annotation

- AI video anonymization

- Data augmentation



Education

ASL Champ
(Gallaudet, 2024)

- What environment to learn signed language 

digitally?

- Adaptive AI for personalized learning

- Educational content delivery, real-time 

classroom support



Signed language generation

Here Comes Mavo!
(Gallaudet, 2025)

- What does a good signing avatar look like?

- Translation between signed languages

- Storytelling



The end!
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