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Why did the LM predict “barking™?

Input: Can you stop the dog from

Output: barking
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Language modeling is complex

Input: Can you stop the dog from

Output: barking Negative

action?

Verb
inflection?

Canine
action?



Language modeling is complex

Input: Can you stop the dog from

Output: barking \

e

barker
barkhan
Barkhausen
barking
Barkla
Barkley
barklouse
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Contrastive explanations are more intuitive

Can you stop the dog from...
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doo

) A barking
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Why did the LM predict “barking” instead of “crying™?

Input: Can you stop the dog from

Output: barking
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Why did the LM predict “barking” instead of “walking™?

Input: Can you stop the dog from

Output: barking
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Why did the LM predict “barking” instead of “walking™?

Input: Can you stop the dog from

Output: barking
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Contrastive explanations for language models

e Gradient g(:vz) = inq(yt!w)
e |nput x gradient g(:vz) - Iy
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Contrastive explanations for language models

e Gradient g(:vz) = Vmiq(yt!w)
e |nput x gradient g(mz) - Iy

Can you stop the dog [fioiil
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Contrastive explanations for language models

e Gradient g(:cz) = Vmiq(yt!w)
e |nput x gradient g(wz) - Iy

Can you stop the dog [fioiil

e Contrastive gradient g (xi) = Va, (q(yt|z) — qyrlx))
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Contrastive explanations for language models

e Gradient g(:cz) = Vmiq(yt!w)
e |nput x gradient g(wz) - Iy

Can you stop the dog [fioiil

e Contrastive gradient g (xi) = Va, (q(yt|z) — qyrlx))

e Contrastive input x gradient g (%) "Ly

Can you stop the dog from
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Contrastive explanations for language models

e Contrastive input x gradient 9(552) "Ly

e C(Contrastive gradient norm ’ |g(ajz) ’ ’Ll

e Contrastive erasure

q(yt|z) — q(ye|T—i)

17



Contrastive explanations for language models

k
e Contrastive input x gradient 9(552) "Ly g (371) )

e C(Contrastive gradient norm ’ |g(ajz) ’ ’Ll

e Contrastive erasure

q(yt|z) — q(ye|T—i)
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Contrastive explanations for language models

k
e Contrastive input x gradient 9(552) "Ly g (371) )

e Contrastive gradient norm ’ |g(gjz) ’ ’Ll ‘ |g* (513‘7,) ’ |L1

e Contrastive erasure

q(yt|z) — q(ye|T—i)
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Contrastive explanations for language models

e Contrastive input x gradient 9(552) "Ly

e C(Contrastive gradient norm | |g(ajz) ’ |L1

e Contrastive erasure

q(yt|z) — q(ye|T—i)

(q(ytlx) — q(yt|T—i)) —

g™ (zi)l| 1

(q(yslz) — q(yyr|T—i))
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Contrastive explanations for language models

k
e Contrastive input x gradient g(ivz) "Ly g (37@) )

e Contrastive gradient norm | |g(gjz) ’ |L1 ‘ |g* (LUZ) ‘ |L1

e Contrastive erasure

q(yelz) — q(yi|e—;) (q(ye|x) — q(yt|z—i)) — (q(yrlz) — a(yr|T=i))

(output.logits[-1] [target]).backward()

(output.logits[-1] [target]-output.logits[-1][foill).backward()
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Result 1:
Contrastive explanations can better identify
linguistically appropriate evidence
for LM decisions
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Defining evidence for grammatical acceptability

BLIMP dataset (\Warstadt et al., 2020): minimal pairs of grammatical acceptability

Many teenagers were helping themselves.
Many teenagers were helping themself.

Anaphor number agreement
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Defining evidence for grammatical acceptability

e Anaphor agreement: extract input tokens coreferent with the target

Many teenagers were helping
Many teenagers were helping themself.
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Defining evidence for grammatical acceptability

e Anaphor agreement: extract input tokens coreferent with the target
e Argument structure: extract the main verb

Amanda was respected by some
Amanda was respected by some picture.
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Defining evidence for grammatical acceptability

e Anaphor agreement: extract input tokens coreferent with the target
e Argument structure: extract the main verb
e Determiner-noun agreement: extract the determiner of the target noun

Phillip was lifting this
Phillip was lifting this mice.
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Defining evidence for grammatical acceptability

Anaphor agreement: extract input tokens coreferent with the target
Argument structure: extract the main verb

Determiner-noun agreement: extract the determiner of the target noun
NPI licensing: extract the NPI

Even these trucks have slowed.
Even these trucks have ever slowed.
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Defining evidence for grammatical acceptability

Anaphor agreement: extract input tokens coreferent with the target
Argument structure: extract the main verb

Determiner-noun agreement: extract the determiner of the target noun
NPI licensing: extract the NPI

Subject-verb agreement: extract subject of the target verb

A sketch of lights appear.
A sketch of lights don’t appear.
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Quantifying alignment between linguistic rules and

explanations

Dot product

] D

Bl
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Quantifying alignment between linguistic rules and
explanations

Dot product

oTolo o ) - [ | I [

More alignment metrics in paper:
Probes needed
Mean reciprocal rank




Contrastive explanations can better identify linguistically
appropriate evidence for LM decisions
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Contrastive explanations can better identify linguistically

appropriate evidence for LM decisions

| Correct Incorrect

| DP(t) PN({) MRR(T) DP(f) PN({) MRR(T)
Rand | 0.34 1.66 0.57 0.27 2.05 0.50
San 0.36 1.45 0.58 0.37 1.60 0.56
St:n 0.50 1.33 0.61 0.48 L7 0.57
Sar 0.26 1.44 0.59 0.24 .72 0.55
St:r 0.36 1.25 0.64 -0.05 1.27 0.64
SE -0.51 1.34 0.64 0.44 1.30 0.55
St 0.29 1.13 0.68 0.18 1.71 0.55

/Contrastive explanations have better alignment than
non-contrastive explanations, especially when
-> the model predicts correctly

-

~
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Contrastive explanations can better identify linguistically

appropriate evidence for LM decisions
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/Contrastive explanations have better alignment than
non-contrastive explanations, especially when

-> the model predicts correctly
K_> the target and appropriate evidence are distant

~
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Result 2:
Contrastive explanations improve
model simulatability
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Model simulatability test

0.08 0.09 0.15 0.01 -0.19 0.07
Q@ R LS & D
&S & F S &
) S L O o
S ¥ S
Q c)\}

Which token did the model more likely predict?
herself

O himself

Was the explanation useful in making your decision?
@ Yes

O No
Correct!
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Model simulatability test

e 10 participants

o ML graduate students 0.08 0.09 0.15 0.01 -0.19 0.07

NS

@\"’ > &O@Q‘. &,\@Q’ vbfa(‘\ Qoé?’

> c)\}Q

Which token did the model more likely predict?
herself

O himself

Was the explanation useful in making your decision?

@ Yes

O No

Correct!

36



Model simulatability test

e 10 participants

o ML graduate students 0.08 0.09 0.15 0.01 -0.19 0.07
e 20 pairs of highly confusable & §®° \\&@o L &"’b
x> Q,\q e \)QQ
words 2
o  Corpus-driven confusion metric Which token did the model more likely predict?
herself

O himself
Was the explanation useful in making your decision?
@ Yes
O No
Correct!

37



Model simulatability test

e 10 participants
o ML graduate students
e 20 pairs of highly confusable
words

o  Corpus-driven confusion metric
e Balanced data

0.08 0.09 0.15 0.01 -0.19 0.07
N R
¢ & & &
N\ QO NS O o
& v
e &

Which token did the model more likely predict?
herself

O himself

Was the explanation useful in making your decision?
@ Yes

O No
Correct!
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Contrastive explanations improve model simulatability
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Contrastive explanations improve model simulatability
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Result 3:
Contrastive explanations help us characterize
how LMs make decisions

41



What context do LMs use for certain decisions?

Hypothesis: linguistically similar decisions
have similar contrastive explanations
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Clustering foils by explanation

Input: General relativity predicts the existence of

Output: black

N

red

N

English

=

Asian

yellow
N

dog
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Clustering foils by explanation

Input: General relativity predicts the existence of

Output: black

Id
= |

yellow

English

Asian

dog

44



Clustering foils by explanation

Input: General relativity predicts the existence of

Output: black

N d
= |

yellow

color
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Clustering foils by explanation

Input: General - predicts the existence of
Output: black

mean

Id
= |

yellow

color




Scaling up the cluster analysis

e Target: 10 most frequent words for each POS
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Scaling up the cluster analysis

e Target: 10 most frequent words for each POS
e F[oil: 10,000 most frequent vocabulary items
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Scaling up the cluster analysis

e Target: 10 most frequent words for each POS
e F[oil: 10,000 most frequent vocabulary items
e |nput sentence: 500 randomly selected
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Foils related to a linguistic phenomenon are clustered
together

Phenomenon Target ‘ Foil Cluster ' Example

Anaphor he she, her, She, Her, herself, hers ' That night , Ilsa confronts Rick in the

Agreement deserted café . When he refuses to give
. her the letters ,

o]
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Foils related to a linguistic phenomenon are clustered
together

Phenomenon Target ‘ Foil Cluster \ Example

Anaphor he she, her, She, Her, herself, hers That night , Ilsa confronts Rick in the

Agreement deserted café . When he refuses to give
her the letters ,

Animate man | fruit, mouse, ship, acid, glass, water, tree, | You may not be surprised to learn that

Subject honey, sea, ice, smoke, wood, rock, sugar, | Kelly Pool was neither invented by a

sand, cherry, dirt, fish, wind, snow

S ®




Foils related to a linguistic phenomenon are clustered
together

Phenomenon Target ‘ Foil Cluster \ Example
Anaphor he she, her, She, Her, herself, hers That night , Ilsa confronts Rick in the
Agreement deserted café . When he refuses to give
1 her the letters ,
Animate man | fruit, mouse, ship, acid, glass, water, tree, | You may not be surprised to learn that
Subject honey, sea, ice, smoke, wood, rock, sugar, | Kelly Pool was neither invented by a
sand, cherry, dirt, fish, wind, snow
Determiner-Noun page | tabs, pages, icons, stops, boxes, doors, short- | Immediately after "Heavy Competition"
Agreement cuts, bags, flavours, locks, teeth, ears, tastes, | first aired, NBC created a sub-
permissions, stairs, tickets, touches, cages,
saves, suburbs

=

52



Foils related to a linguistic phenomenon are clustered
together

Phenomenon Target ‘ Foil Cluster \ Example

Anaphor he she, her, She, Her, herself, hers That night , Ilsa confronts Rick in the

Agreement deserted café . When he refuses to give
her the letters ,

Animate man | fruit, mouse, ship, acid, glass, water, tree, | You may not be surprised to learn that

Subject honey, sea, ice, smoke, wood, rock, sugar, | Kelly Pool was neither invented by a

sand, cherry, dirt, fish, wind, snow

Determiner-Noun page | tabs, pages, icons, stops, boxes, doors, short- | Immediately after "Heavy Competition"
Agreement cuts, Wgs,ﬂavours, locks, teeth, ears, tastes, | first aired, NBC created a sub-
permissions, stairs, tickets, touches, cages,
saves, suburbs

Subject-Verb go doesn, causes, looks, needs, makes, isn, says, | Mala and the Eskimos
Agreement seems, seeks, displays, gives, wants, takes,
uses, fav, contains, keeps, sees, tries, sounds

@ 1 .



Contrastive explanations help us characterize how LMs
make decisions

See paper for aggregate analysis of
linguistic distinctions and results
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Contrastive explanations help us characterize how LMs

make decisions

Phenomenon / POS | Target | Foil Cluster | Example

ADIJ black | Black, white, black, White, red, BLACK, | Although general relativity can be used
green, brown, dark, orange, African, blue, yel- | to perform a semi @-@ classical calcu-
low, pink, purple, gray, grey, whites, Brown, | lation of
silver

ADJ black | Asian, Chinese, English, Italian, American, | While taking part in the American Ne-
Indian, East, South, British, Japanese, Euro- | gro Academy (ANA) in 1897 , Du Bois
pean, African, Eastern, North, Washington, | presented a paper in which he rejected
US, West, Australian, California, London Frederick Douglass ’s plea for

ADP for | to, in, and, on, with, for, when, from, at, (, | The war of words would continue
if, as, after, by, over, because, while, without,
before, through

ADV back | the, to, a, in, and, on, of, it, ", not, that, with, | One would have thought that claims dat-
for, this, from, up, just, at, (, all ing

DET his | the, you, it, not, that, my, [, this, your, he, all, | A preview screening of Sweet Smell of
so, what, there, her, some, his, time, him, He | Success was poorly received , as Tony

Curtis fans were expecting him to play
one of

NOUN girl | Guy, Jack, Jones, Robin, James, David, Tom, | Veronica talks to to Sean Friedrich and
Todd, Frank, Mike, Jimmy, Michael, Peter, | tells him about the
George, William, Bill, Smith, Tony, Harry,
Jackson

NUM five | the, to, a, in, and, on, of, is, it, ", not, that, 1, | From the age of
with, for, 2, this, up, just, at

VERB going | got, didn, won, opened, told, went, heard, saw, | Truman had dreamed of

wanted, lost, came, started, took, gave, hap-
pened, tried, couldn, died, turned, looked




Bonus: interpreting NMT models with contrastive
explanations

Why did the model predict “carnet”?
En: | like my old notebook better than my new notebook.

Fr: JJaime mieux mon ancien carnet que mon nouveau

®
L)
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Bonus: interpreting NMT models with contrastive
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Why did the model predict “carnet”?
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Bonus: interpreting NMT models with contrastive
explanations

Why did the model predict “carnet”? \\ s
En: | like my old notebook better than my new [SICHOOK. 5 4 \

Fr: JJaime mieux mon ancien carnet que mon -

Why did the model predict “carnet” instead of “ordinateur”?

En: | like my old notebook better than my new notebook.

Fr: J'aime mieux mon ancien carnet que mon nouveau
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Bonus: interpreting NMT models with contrastive
explanations

Why did the model predict “carnet”? \ y
En: | like my old notebook better than my new _ e \

Fr: JJaime mieux mon ancien carnet que mon -

Why did the model predict “carnet” instead of “ordinateur”?

En: | like my old [ISECBBBR better than my new notebook.

Fr: JJaime mieux mon ancien - gue mon nouveau
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Summary

Contrastive explanations...

1. can better identify linguistically
appropriate evidence

2. improve model simulatability

3. help us characterize how LMs make
decisions

Asking
why an LM
generated a word

Asking
why an LM
generated a word
*instead
of* another word

60



