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Why did the LM predict “barking”?

Input: Can you stop the dog from

Output: barking
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Language modeling is complex

Input: Can you stop the dog from

Output: barking
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POS?
Action 
verb?

Verb 
inflection? Canine 

action?

Negative 
action?



Language modeling is complex
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…
barker
barkhan
Barkhausen
barking
Barkla
Barkley
barklouse
…
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Contrastive explanations are more intuitive

target

foil



Why did the LM predict “barking” instead of “crying”?
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Input: Can you stop the dog from

Output: barking



Why did the LM predict “barking” instead of “crying”?
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Input: Can you stop the dog from

Output: barking



Why did the LM predict “barking” instead of “walking”?
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Input: Can you stop the dog from

Output: barking



Why did the LM predict “barking” instead of “walking”?
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Input: Can you stop the dog from

Output: barking



Contrastive explanations for language models
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● Input x gradient
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● Contrastive gradient norm 

● Contrastive erasure
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Contrastive explanations for language models
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Result 1: 
Contrastive explanations can better identify 

linguistically appropriate evidence 
for LM decisions
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Defining evidence for grammatical acceptability
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BLiMP dataset (Warstadt et al., 2020): minimal pairs of grammatical acceptability

Anaphor number agreement

Many teenagers were helping themselves.
Many teenagers were helping themself.



Defining evidence for grammatical acceptability
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● Anaphor agreement: extract input tokens coreferent with the target

Many teenagers were helping themselves.
Many teenagers were helping themself.



Defining evidence for grammatical acceptability

25

● Anaphor agreement: extract input tokens coreferent with the target
● Argument structure: extract the main verb

Amanda was respected by some waitresses.
Amanda was respected by some picture.



Defining evidence for grammatical acceptability
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● Anaphor agreement: extract input tokens coreferent with the target
● Argument structure: extract the main verb
● Determiner-noun agreement: extract the determiner of the target noun

Phillip was lifting this mouse.
Phillip was lifting this mice.



Defining evidence for grammatical acceptability
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● Anaphor agreement: extract input tokens coreferent with the target
● Argument structure: extract the main verb
● Determiner-noun agreement: extract the determiner of the target noun
● NPI licensing: extract the NPI

Even these trucks have often slowed.
Even these trucks have ever slowed.



Defining evidence for grammatical acceptability
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● Anaphor agreement: extract input tokens coreferent with the target
● Argument structure: extract the main verb
● Determiner-noun agreement: extract the determiner of the target noun
● NPI licensing: extract the NPI
● Subject-verb agreement: extract subject of the target verb

A sketch of lights doesn’t appear.
A sketch of lights don’t appear.



Quantifying alignment between linguistic rules and 
explanations
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Dot product

0 0 0 0 1 1 0 -.5 .1 .3 .1



Quantifying alignment between linguistic rules and 
explanations
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Dot product

0 0 0 0 1 1 0 -.5 .1 .3 .1

More alignment metrics in paper:
Probes needed
Mean reciprocal rank



Contrastive explanations can better identify linguistically 
appropriate evidence for LM decisions
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Non-contrastive

Contrastive

Contrastive explanations have better alignment than 
non-contrastive explanations



Contrastive explanations can better identify linguistically 
appropriate evidence for LM decisions
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Contrastive explanations have better alignment than 
non-contrastive explanations, especially when
-> the model predicts correctly



Contrastive explanations can better identify linguistically 
appropriate evidence for LM decisions
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Contrastive explanations have better alignment than 
non-contrastive explanations, especially when
-> the model predicts correctly
-> the target and appropriate evidence are distant



Result 2: 
Contrastive explanations improve 

model simulatability
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Model simulatability test
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Model simulatability test
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● 10 participants
○ ML graduate students



Model simulatability test
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● 10 participants
○ ML graduate students

● 20 pairs of highly confusable 
words
○ Corpus-driven confusion metric



Model simulatability test
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● 10 participants
○ ML graduate students

● 20 pairs of highly confusable 
words
○ Corpus-driven confusion metric

● Balanced data



Contrastive explanations improve model simulatability

39



Contrastive explanations improve model simulatability
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Result 3: 
Contrastive explanations help us characterize 

how LMs make decisions
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What context do LMs use for certain decisions?
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Hypothesis: linguistically similar decisions 
have similar contrastive explanations



Clustering foils by explanation
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Input: General relativity predicts the existence of

Output: black

red

Asian

yellow

English

dog
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Clustering foils by explanation
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Input: General relativity predicts the existence of

Output: black

red

yellow

color



Input: General relativity predicts the existence of

Output: black

Clustering foils by explanation
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red

yellow

color

mean



● Target: 10 most frequent words for each POS

Scaling up the cluster analysis
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● Target: 10 most frequent words for each POS
● Foil: 10,000 most frequent vocabulary items

Scaling up the cluster analysis
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● Target: 10 most frequent words for each POS
● Foil: 10,000 most frequent vocabulary items
● Input sentence: 500 randomly selected

Scaling up the cluster analysis
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Foils related to a linguistic phenomenon are clustered 
together
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Foils related to a linguistic phenomenon are clustered 
together
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Foils related to a linguistic phenomenon are clustered 
together
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Foils related to a linguistic phenomenon are clustered 
together
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Contrastive explanations help us characterize how LMs 
make decisions
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See paper for aggregate analysis of 
linguistic distinctions and results



Contrastive explanations help us characterize how LMs 
make decisions
●
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Bonus: interpreting NMT models with contrastive 
explanations

56

Why did the model predict “carnet”?

En: I like my old notebook better than my new notebook.

Fr: J’aime mieux mon ancien carnet que mon nouveau
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Bonus: interpreting NMT models with contrastive 
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Why did the model predict “carnet”?

En: I like my old notebook better than my new notebook.

Fr: J’aime mieux mon ancien carnet que mon nouveau

Why did the model predict “carnet” instead of “ordinateur”?

En: I like my old notebook better than my new notebook.

Fr: J’aime mieux mon ancien carnet que mon nouveau



Bonus: interpreting NMT models with contrastive 
explanations
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Why did the model predict “carnet”?

En: I like my old notebook better than my new notebook.

Fr: J’aime mieux mon ancien carnet que mon nouveau

Why did the model predict “carnet” instead of “ordinateur”?

En: I like my old notebook better than my new notebook.

Fr: J’aime mieux mon ancien carnet que mon nouveau



Contrastive explanations…

1. can better identify linguistically 
appropriate evidence

2. improve model simulatability
3. help us characterize how LMs make 

decisions

Summary

60


