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Signed Languages
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● Fully-fledged natural languages
● Expressed through various cues
● Independent of spoken languages
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● 200 signed languages
● ~70m deaf people



Signed Languages

4

● Primary and preferred means of 
communication for Deaf communities
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Let’s allow everyone to benefit from technology using their preferred 
language!
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Little NLP 
involvement

Mostly 
computer vision



Who is Working on Sign Language Processing?

11

Current models ignore the linguistic structure of signed languages 
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Incorporate linguistic insight into 
Sign Language Processing
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POS TaggingSyntactic Parsing

Named Entity 
Recognition

Coreference 
Resolution

● Both spoken and signed languages express the grammar of natural 
languages 

● Extend core NLP tools to signed languages
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Taxonomy of language resources
(Joshi et al., 2020)

● Need large, realistic datasets

https://arxiv.org/abs/2004.09095
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Taxonomy of language resources
(Joshi et al., 2020)

● Need large, realistic datasets
● All signed languages are 

extremely low-resource

https://arxiv.org/abs/2004.09095
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● Difficult to recruit and record signers for data collection



Challenges: Data Scarcity

18

● Difficult to recruit and record signers for data collection
● Finding / training annotators is challenging



Challenges: Data Scarcity

19

● Difficult to recruit and record signers for data collection
● Finding / training annotators is challenging
● 1 minute of labelled data requires 600 minutes of data collection
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● Grounding in signing space
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● Grounding in signing space
● We need to model the spatial 

discourse
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In this talk, we explore:

● Data augmentation for Sign Language Translation



Natural Language Processing for Signed Languages
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In this talk, we explore:

● Data augmentation for Sign Language Translation

● Coreference resolution for pronominal indexing signs



Data Augmentation for 
Sign Language Gloss Translation

Amit Moryossef*, Kayo Yin*, Graham Neubig, Yoav Goldberg
(MTSummit21 AT4SSL Workshop)

*Equal contribution
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● Gloss-to-text translation = extremely low resource MT

● How is the relationship between a signed and spoken language 
different from two spoken languages?

● Can we improve gloss-to-text translation using pseudo-parallel 
data?
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● Lexical similarity

● Syntactic similarity
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Signed vs. Spoken Languages
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➔ Signed-spoken language pairs are lexically similar but syntactically 
different 

● Syntactic similarity
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I’m looking forward to seeing the children tomorrow.
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I’m looking forward to seeing the children tomorrow.
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I’m looking forward to seeing the children tomorrow.

LOOK FORWARD SEE CHILD TOMORROW
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I’m looking forward to seeing the children tomorrow.

FORWARD LOOK TOMORROW CHILD SEE 



Data
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● NCSLGR (SignStream, 2007)
○ American Sign Language (ASL) - English
○ 1,875 parallel sentences

● PHOENIX 2014T (Camgoz et al., 2018)
○ German Sign Language (DGS) - German
○ 8,257 parallel sentences
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Real Data

NMT (Yin and Read, 2020)

Synthesized 
Data
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Real Data

NMT (Yin and Read, 2020)

Synthesized 
Data
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Results
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● Consistent translation improvements using data augmentation to 
leverage lexical similarities and handle syntactic differences

● Data augmentation using monolingual spoken language data is a 
promising approach



Signed Coreference Resolution

Kayo Yin, Kenneth DeHaan, Malihe Alikhani
(EMNLP 2021)
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➔ Novel challenges in modeling discourse and spatial context

➔ Better understanding of grounding in different forms of communication

➔ Broaden the scope of NLP to multiple modalities

➔ Enable Sign Language Processing technologies

Signed Coreference Resolution



1. Pronominal Pointing Signs

2. Signed Coreference Resolution

3. Unsupervised Continuous Multigraph

4. Results & Discussion

Outline



➔ Pointing signs with a pronominal function

➔ Referents are established in the signing space

➔ Point to the actual location of the referent

➔ Assign a locus to the referent
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➔ Pointing signs can serve other functions

➔ Difficult to distinguish between different pointing signs based solely on 

local visual features

Complexities of Pointing Signs
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- Use the same handshape, 
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My mother never liked Alice, she thought she was up to no good.
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English Pronouns

+ Carry some meaning on its own
- The same word can refer to 

multiple entities at once

Complexities of Pointing Signs

ASL Pointing Signs

- Use the same handshape, 
harder to distinguish on its own

+ 1 locus = 1 referent
- Loci can be reassigned to 

different referents
- Referents can be assigned 

multiple loci
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➔ Theories of coreference in spoken languages may be extended to 

signed languages 

◆ Discourse Representation Theory (Kamp et al., 2011; Steinbach and Onea 2016)

◆ First mention effect (Gernsbacher and Hargreaves, 1988; Wienholz et al., 2020)

➔ It can help us better understand multimodal communication

◆ Spatial iconicity and situated referents in signed languages

➔ Widen the accessibility of language technologies

Why study Signed Coreference Resolution in NLP?



1. Pronominal Pointing Signs

2. Signed Coreference Resolution 

3. Unsupervised Continuous Multigraph

4. Results & Discussion

Outline
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Signed Coreference Resolution

1. Mention Detection



Signed Coreference Resolution

2. Coreference Resolution



DGS-Coref Dataset

Public DGS Corpus (Hanke et al., 2020)



DGS-Coref Dataset



➔ 16m30s of signing

➔ 3 conversations

➔ 5 different signers

➔ 288 signed sentences

➔ 1,457 glosses

◆ 95 <I> signs

◆ 8 <YOU> signs

◆ 93 <INDEX> signs

DGS-Coref Dataset

A: WITH TRIP INDEX SHIP INDEX

A: We went there with an excursion boat.
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1. I and I
2. You and You
3. I and You
4. Different Person

Negative Relations
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6. Spatially Close Index

Weight Assignment
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Positive Relations

1. I and I

2. You and You

3. I and You

4. Temporally Close Index

5. Noun Phrase

6. Spatially Close Index

Weight Assignment

Negative Relations

1. I and I

2. You and You

3. I and You

4. Spatially Far Index

-∞+0.5

+(10-t)/20

+(50-s)/50
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1. Pronominal Pointing Signs

2. Signed Coreference Resolution

3. Unsupervised Continuous Multigraph

4. Results & Discussion
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TO-SEE YOU GOOD YOU 

I think you could do a good job there. 

GEST-DECLINE I CAN NOT TO-SAY TO-HOLD-ON  I 

I can’t keep that promise



Examples

TO-SEE YOU GOOD YOU 

I think you could do a good job there. 

GEST-DECLINE I CAN NOT TO-SAY TO-HOLD-ON  I 

I can’t keep that promise

P_IAndIP_YouAndYou

P_IAndYou
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Once we were in Stuttgart, once in Ingolstadt and once in Freiburg.



Examples

STUTTGART NUM-1 NAME INDEX NUM-1 FREIBURG

Once we were in Stuttgart, once in Ingolstadt and once in Freiburg.

P_NounPhrase
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We went there with an excursion boat.
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Examples

I TO-LEARN INDEX HAMBURG INDEX

I learned it in Hamburg.

P_TemporallyCloseIndex
P_SpatiallyCloseIndex
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Conclusion

● Signed language data is scarce and hard to obtain
○ Data augmentation from monolingual spoken language data is 

one promising way to mitigate this

● The meaning of certain signs rely on spatial context 
○ Signed Coreference Resolution as a new challenge
○ Unsupervised Continuous Multigraph for SCR
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● Resolve other types of ambiguous signs
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Summary

➔ New challenge: Signed Coreference Resolution

➔ Annotation software & DGS-Coref dataset 

➔ Unsupervised Continuous Multigraph for SCR 

➔ Code & data: https://github.com/kayoyin/scr



Future Work

➔ Detect reassignment of loci

➔ Detect different functions of indexing signs

➔ Keep track of the dynamic signing space

➔ Directly process videos

➔ Resolve other types of pronominal signs

➔ Resolve other types of ambiguous signs


